-
CVE-2022-49921
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net: sched: Fix use after free in red_enqueue()
We can't use "skb" again after passing it to qdisc_enqueue(). This is
basically identical to commit 2f09707d0c97 ("sch_sfb: Also store skb
len before calling child enqueue").
-
CVE-2022-49920
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: netlink notifier might race to release objects
commit release path is invoked via call_rcu and it runs lockless to
release the objects after rcu grace period. The netlink notifier handler
might win race to remove objects that the transaction context is still
referencing from the commit release path.
Call rcu_barrier() to ensure pending rcu callbacks run to completion
if the list of transactions to be destroyed is not empty.
-
CVE-2022-49919
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: release flow rule object from commit path
No need to postpone this to the commit release path, since no packets
are walking over this object, this is accessed from control plane only.
This helped uncovered UAF triggered by races with the netlink notifier.
-
CVE-2022-49918
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix WARNING in __ip_vs_cleanup_batch()
During the initialization of ip_vs_conn_net_init(), if file ip_vs_conn
or ip_vs_conn_sync fails to be created, the initialization is successful
by default. Therefore, the ip_vs_conn or ip_vs_conn_sync file doesn't
be found during the remove.
The following is the stack information:
name 'ip_vs_conn_sync'
WARNING: CPU: 3 PID: 9 at fs/proc/generic.c:712
remove_proc_entry+0x389/0x460
Modules linked in:
Workqueue: netns cleanup_net
RIP: 0010:remove_proc_entry+0x389/0x460
Call Trace:
TASK
__ip_vs_cleanup_batch+0x7d/0x120
ops_exit_list+0x125/0x170
cleanup_net+0x4ea/0xb00
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
-
CVE-2022-49917
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix WARNING in ip_vs_app_net_cleanup()
During the initialization of ip_vs_app_net_init(), if file ip_vs_app
fails to be created, the initialization is successful by default.
Therefore, the ip_vs_app file doesn't be found during the remove in
ip_vs_app_net_cleanup(). It will cause WRNING.
The following is the stack information:
name 'ip_vs_app'
WARNING: CPU: 1 PID: 9 at fs/proc/generic.c:712 remove_proc_entry+0x389/0x460
Modules linked in:
Workqueue: netns cleanup_net
RIP: 0010:remove_proc_entry+0x389/0x460
Call Trace:
TASK
ops_exit_list+0x125/0x170
cleanup_net+0x4ea/0xb00
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
-
CVE-2022-49916
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
rose: Fix NULL pointer dereference in rose_send_frame()
The syzkaller reported an issue:
KASAN: null-ptr-deref in range [0x0000000000000380-0x0000000000000387]
CPU: 0 PID: 4069 Comm: kworker/0:15 Not tainted 6.0.0-syzkaller-02734-g0326074ff465 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Workqueue: rcu_gp srcu_invoke_callbacks
RIP: 0010:rose_send_frame+0x1dd/0x2f0 net/rose/rose_link.c:101
Call Trace:
IRQ
rose_transmit_clear_request+0x1d5/0x290 net/rose/rose_link.c:255
rose_rx_call_request+0x4c0/0x1bc0 net/rose/af_rose.c:1009
rose_loopback_timer+0x19e/0x590 net/rose/rose_loopback.c:111
call_timer_fn+0x1a0/0x6b0 kernel/time/timer.c:1474
expire_timers kernel/time/timer.c:1519 [inline]
__run_timers.part.0+0x674/0xa80 kernel/time/timer.c:1790
__run_timers kernel/time/timer.c:1768 [inline]
run_timer_softirq+0xb3/0x1d0 kernel/time/timer.c:1803
__do_softirq+0x1d0/0x9c8 kernel/softirq.c:571
[...]
It triggers NULL pointer dereference when 'neigh->dev->dev_addr' is
called in the rose_send_frame(). It's the first occurrence of the
`neigh` is in rose_loopback_timer() as `rose_loopback_neigh', and
the 'dev' in 'rose_loopback_neigh' is initialized sa nullptr.
It had been fixed by commit 3b3fd068c56e3fbea30090859216a368398e39bf
("rose: Fix Null pointer dereference in rose_send_frame()") ever.
But it's introduced by commit 3c53cd65dece47dd1f9d3a809f32e59d1d87b2b8
("rose: check NULL rose_loopback_neigh->loopback") again.
We fix it by add NULL check in rose_transmit_clear_request(). When
the 'dev' in 'neigh' is NULL, we don't reply the request and just
clear it.
syzkaller don't provide repro, and I provide a syz repro like:
r0 = syz_init_net_socket$bt_sco(0x1f, 0x5, 0x2)
ioctl$sock_inet_SIOCSIFFLAGS(r0, 0x8914, &(0x7f0000000180)={'rose0\x00', 0x201})
r1 = syz_init_net_socket$rose(0xb, 0x5, 0x0)
bind$rose(r1, &(0x7f00000000c0)=@full={0xb, @dev, @null, 0x0, [@null, @null, @netrom, @netrom, @default, @null]}, 0x40)
connect$rose(r1, &(0x7f0000000240)=@short={0xb, @dev={0xbb, 0xbb, 0xbb, 0x1, 0x0}, @remote={0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0x1}, 0x1, @netrom={0xbb, 0xbb, 0xbb, 0xbb, 0xbb, 0x0, 0x0}}, 0x1c)
-
CVE-2022-49915
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
mISDN: fix possible memory leak in mISDN_register_device()
Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically,
add put_device() to give up the reference, so that the name can be
freed in kobject_cleanup() when the refcount is 0.
Set device class before put_device() to avoid null release() function
WARN message in device_release().
-
CVE-2022-49914
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix inode list leak during backref walking at resolve_indirect_refs()
During backref walking, at resolve_indirect_refs(), if we get an error
we jump to the 'out' label and call ulist_free() on the 'parents' ulist,
which frees all the elements in the ulist - however that does not free
any inode lists that may be attached to elements, through the 'aux' field
of a ulist node, so we end up leaking lists if we have any attached to
the unodes.
Fix this by calling free_leaf_list() instead of ulist_free() when we exit
from resolve_indirect_refs(). The static function free_leaf_list() is
moved up for this to be possible and it's slightly simplified by removing
unnecessary code.
-
CVE-2022-49913
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix inode list leak during backref walking at find_parent_nodes()
During backref walking, at find_parent_nodes(), if we are dealing with a
data extent and we get an error while resolving the indirect backrefs, at
resolve_indirect_refs(), or in the while loop that iterates over the refs
in the direct refs rbtree, we end up leaking the inode lists attached to
the direct refs we have in the direct refs rbtree that were not yet added
to the refs ulist passed as argument to find_parent_nodes(). Since they
were not yet added to the refs ulist and prelim_release() does not free
the lists, on error the caller can only free the lists attached to the
refs that were added to the refs ulist, all the remaining refs get their
inode lists never freed, therefore leaking their memory.
Fix this by having prelim_release() always free any attached inode list
to each ref found in the rbtree, and have find_parent_nodes() set the
ref's inode list to NULL once it transfers ownership of the inode list
to a ref added to the refs ulist passed to find_parent_nodes().
-
CVE-2022-49912
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix ulist leaks in error paths of qgroup self tests
In the test_no_shared_qgroup() and test_multiple_refs() qgroup self tests,
if we fail to add the tree ref, remove the extent item or remove the
extent ref, we are returning from the test function without freeing the
"old_roots" ulist that was allocated by the previous calls to
btrfs_find_all_roots(). Fix that by calling ulist_free() before returning.
-
CVE-2022-49911
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: enforce documented limit to prevent allocating huge memory
Daniel Xu reported that the hash:net,iface type of the ipset subsystem does
not limit adding the same network with different interfaces to a set, which
can lead to huge memory usage or allocation failure.
The quick reproducer is
$ ipset create ACL.IN.ALL_PERMIT hash:net,iface hashsize 1048576 timeout 0
$ for i in $(seq 0 100); do /sbin/ipset add ACL.IN.ALL_PERMIT 0.0.0.0/0,kaf_$i timeout 0 -exist; done
The backtrace when vmalloc fails:
[Tue Oct 25 00:13:08 2022] ipset: vmalloc error: size 1073741848, exceeds total pages
...
[Tue Oct 25 00:13:08 2022] Call Trace:
[Tue Oct 25 00:13:08 2022]
[Tue Oct 25 00:13:08 2022] dump_stack_lvl+0x48/0x60
[Tue Oct 25 00:13:08 2022] warn_alloc+0x155/0x180
[Tue Oct 25 00:13:08 2022] __vmalloc_node_range+0x72a/0x760
[Tue Oct 25 00:13:08 2022] ? hash_netiface4_add+0x7c0/0xb20
[Tue Oct 25 00:13:08 2022] ? __kmalloc_large_node+0x4a/0x90
[Tue Oct 25 00:13:08 2022] kvmalloc_node+0xa6/0xd0
[Tue Oct 25 00:13:08 2022] ? hash_netiface4_resize+0x99/0x710
<...>
The fix is to enforce the limit documented in the ipset(8) manpage:
> The internal restriction of the hash:net,iface set type is that the same
> network prefix cannot be stored with more than 64 different interfaces
> in a single set.
-
CVE-2022-49910
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free caused by l2cap_reassemble_sdu
Fix the race condition between the following two flows that run in
parallel:
1. l2cap_reassemble_sdu - chan->ops->recv (l2cap_sock_recv_cb) ->
__sock_queue_rcv_skb.
2. bt_sock_recvmsg -> skb_recv_datagram, skb_free_datagram.
An SKB can be queued by the first flow and immediately dequeued and
freed by the second flow, therefore the callers of l2cap_reassemble_sdu
can't use the SKB after that function returns. However, some places
continue accessing struct l2cap_ctrl that resides in the SKB's CB for a
short time after l2cap_reassemble_sdu returns, leading to a
use-after-free condition (the stack trace is below, line numbers for
kernel 5.19.8).
Fix it by keeping a local copy of struct l2cap_ctrl.
BUG: KASAN: use-after-free in l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
Read of size 1 at addr ffff88812025f2f0 by task kworker/u17:3/43169
Workqueue: hci0 hci_rx_work [bluetooth]
Call Trace:
TASK>
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 4))
print_report.cold (mm/kasan/report.c:314 mm/kasan/report.c:429)
? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
kasan_report (mm/kasan/report.c:162 mm/kasan/report.c:493)
? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
l2cap_rx (net/bluetooth/l2cap_core.c:7236 net/bluetooth/l2cap_core.c:7271) bluetooth
ret_from_fork (arch/x86/entry/entry_64.S:306)
Allocated by task 43169:
kasan_save_stack (mm/kasan/common.c:39)
__kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469)
kmem_cache_alloc_node (mm/slab.h:750 mm/slub.c:3243 mm/slub.c:3293)
__alloc_skb (net/core/skbuff.c:414)
l2cap_recv_frag (./include/net/bluetooth/bluetooth.h:425 net/bluetooth/l2cap_core.c:8329) bluetooth
l2cap_recv_acldata (net/bluetooth/l2cap_core.c:8442) bluetooth
hci_rx_work (net/bluetooth/hci_core.c:3642 net/bluetooth/hci_core.c:3832) bluetooth
process_one_work (kernel/workqueue.c:2289)
worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2437)
kthread (kernel/kthread.c:376)
ret_from_fork (arch/x86/entry/entry_64.S:306)
Freed by task 27920:
kasan_save_stack (mm/kasan/common.c:39)
kasan_set_track (mm/kasan/common.c:45)
kasan_set_free_info (mm/kasan/generic.c:372)
____kasan_slab_free (mm/kasan/common.c:368 mm/kasan/common.c:328)
slab_free_freelist_hook (mm/slub.c:1780)
kmem_cache_free (mm/slub.c:3536 mm/slub.c:3553)
skb_free_datagram (./include/net/sock.h:1578 ./include/net/sock.h:1639 net/core/datagram.c:323)
bt_sock_recvmsg (net/bluetooth/af_bluetooth.c:295) bluetooth
l2cap_sock_recvmsg (net/bluetooth/l2cap_sock.c:1212) bluetooth
sock_read_iter (net/socket.c:1087)
new_sync_read (./include/linux/fs.h:2052 fs/read_write.c:401)
vfs_read (fs/read_write.c:482)
ksys_read (fs/read_write.c:620)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120)
-
CVE-2022-49909
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: fix use-after-free in l2cap_conn_del()
When l2cap_recv_frame() is invoked to receive data, and the cid is
L2CAP_CID_A2MP, if the channel does not exist, it will create a channel.
However, after a channel is created, the hold operation of the channel
is not performed. In this case, the value of channel reference counting
is 1. As a result, after hci_error_reset() is triggered, l2cap_conn_del()
invokes the close hook function of A2MP to release the channel. Then
l2cap_chan_unlock(chan) will trigger UAF issue.
The process is as follows:
Receive data:
l2cap_data_channel()
a2mp_channel_create() ---channel ref is 2
l2cap_chan_put() --->channel ref is 1
Triger event:
hci_error_reset()
hci_dev_do_close()
...
l2cap_disconn_cfm()
l2cap_conn_del()
l2cap_chan_hold() --->channel ref is 2
l2cap_chan_del() --->channel ref is 1
a2mp_chan_close_cb() --->channel ref is 0, release channel
l2cap_chan_unlock() --->UAF of channel
The detailed Call Trace is as follows:
BUG: KASAN: use-after-free in __mutex_unlock_slowpath+0xa6/0x5e0
Read of size 8 at addr ffff8880160664b8 by task kworker/u11:1/7593
Workqueue: hci0 hci_error_reset
Call Trace:
TASK>
dump_stack_lvl+0xcd/0x134
print_report.cold+0x2ba/0x719
kasan_report+0xb1/0x1e0
kasan_check_range+0x140/0x190
__mutex_unlock_slowpath+0xa6/0x5e0
l2cap_conn_del+0x404/0x7b0
l2cap_disconn_cfm+0x8c/0xc0
hci_conn_hash_flush+0x11f/0x260
hci_dev_close_sync+0x5f5/0x11f0
hci_dev_do_close+0x2d/0x70
hci_error_reset+0x9e/0x140
process_one_work+0x98a/0x1620
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
Allocated by task 7593:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0xa9/0xd0
l2cap_chan_create+0x40/0x930
amp_mgr_create+0x96/0x990
a2mp_channel_create+0x7d/0x150
l2cap_recv_frame+0x51b8/0x9a70
l2cap_recv_acldata+0xaa3/0xc00
hci_rx_work+0x702/0x1220
process_one_work+0x98a/0x1620
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
Freed by task 7593:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_set_free_info+0x20/0x30
____kasan_slab_free+0x167/0x1c0
slab_free_freelist_hook+0x89/0x1c0
kfree+0xe2/0x580
l2cap_chan_put+0x22a/0x2d0
l2cap_conn_del+0x3fc/0x7b0
l2cap_disconn_cfm+0x8c/0xc0
hci_conn_hash_flush+0x11f/0x260
hci_dev_close_sync+0x5f5/0x11f0
hci_dev_do_close+0x2d/0x70
hci_error_reset+0x9e/0x140
process_one_work+0x98a/0x1620
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
Last potentially related work creation:
kasan_save_stack+0x1e/0x40
__kasan_record_aux_stack+0xbe/0xd0
call_rcu+0x99/0x740
netlink_release+0xe6a/0x1cf0
__sock_release+0xcd/0x280
sock_close+0x18/0x20
__fput+0x27c/0xa90
task_work_run+0xdd/0x1a0
exit_to_user_mode_prepare+0x23c/0x250
syscall_exit_to_user_mode+0x19/0x50
do_syscall_64+0x42/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Second to last potentially related work creation:
kasan_save_stack+0x1e/0x40
__kasan_record_aux_stack+0xbe/0xd0
call_rcu+0x99/0x740
netlink_release+0xe6a/0x1cf0
__sock_release+0xcd/0x280
sock_close+0x18/0x20
__fput+0x27c/0xa90
task_work_run+0xdd/0x1a0
exit_to_user_mode_prepare+0x23c/0x250
syscall_exit_to_user_mode+0x19/0x50
do_syscall_64+0x42/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-
CVE-2022-49908
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix memory leak in vhci_write
Syzkaller reports a memory leak as follows:
====================================
BUG: memory leak
unreferenced object 0xffff88810d81ac00 (size 240):
[...]
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[ffffffff838733d9] __alloc_skb+0x1f9/0x270 net/core/skbuff.c:418
[] alloc_skb include/linux/skbuff.h:1257 [inline]
[] bt_skb_alloc include/net/bluetooth/bluetooth.h:469 [inline]
[] vhci_get_user drivers/bluetooth/hci_vhci.c:391 [inline]
[] vhci_write+0x5f/0x230 drivers/bluetooth/hci_vhci.c:511
[] call_write_iter include/linux/fs.h:2192 [inline]
[] new_sync_write fs/read_write.c:491 [inline]
[] vfs_write+0x42d/0x540 fs/read_write.c:578
[] ksys_write+0x9d/0x160 fs/read_write.c:631
[] do_syscall_x64 arch/x86/entry/common.c:50 [inline]
[] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
[] entry_SYSCALL_64_after_hwframe+0x63/0xcd
====================================
HCI core will uses hci_rx_work() to process frame, which is queued to
the hdev->rx_q tail in hci_recv_frame() by HCI driver.
Yet the problem is that, HCI core may not free the skb after handling
ACL data packets. To be more specific, when start fragment does not
contain the L2CAP length, HCI core just copies skb into conn->rx_skb and
finishes frame process in l2cap_recv_acldata(), without freeing the skb,
which triggers the above memory leak.
This patch solves it by releasing the relative skb, after processing
the above case in l2cap_recv_acldata().
-
CVE-2022-49907
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net: mdio: fix undefined behavior in bit shift for __mdiobus_register
Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:
UBSAN: shift-out-of-bounds in drivers/net/phy/mdio_bus.c:586:27
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
TASK
dump_stack_lvl+0x7d/0xa5
dump_stack+0x15/0x1b
ubsan_epilogue+0xe/0x4e
__ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
__mdiobus_register+0x49d/0x4e0
fixed_mdio_bus_init+0xd8/0x12d
do_one_initcall+0x76/0x430
kernel_init_freeable+0x3b3/0x422
kernel_init+0x24/0x1e0
ret_from_fork+0x1f/0x30
-
CVE-2022-49906
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Free rwi on reset success
Free the rwi structure in the event that the last rwi in the list
processed successfully. The logic in commit 4f408e1fa6e1 ("ibmvnic:
retry reset if there are no other resets") introduces an issue that
results in a 32 byte memory leak whenever the last rwi in the list
gets processed.
-
CVE-2022-49905
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net/smc: Fix possible leaked pernet namespace in smc_init()
In smc_init(), register_pernet_subsys(&smc_net_stat_ops) is called
without any error handling.
If it fails, registering of &smc_net_ops won't be reverted.
And if smc_nl_init() fails, &smc_net_stat_ops itself won't be reverted.
This leaves wild ops in subsystem linkedlist and when another module
tries to call register_pernet_operations() it triggers page fault:
BUG: unable to handle page fault for address: fffffbfff81b964c
RIP: 0010:register_pernet_operations+0x1b9/0x5f0
Call Trace:
TASK
register_pernet_subsys+0x29/0x40
ebtables_init+0x58/0x1000 [ebtables]
...
-
CVE-2022-49904
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net, neigh: Fix null-ptr-deref in neigh_table_clear()
When IPv6 module gets initialized but hits an error in the middle,
kenel panic with:
KASAN: null-ptr-deref in range [0x0000000000000598-0x000000000000059f]
CPU: 1 PID: 361 Comm: insmod
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:__neigh_ifdown.isra.0+0x24b/0x370
RSP: 0018:ffff888012677908 EFLAGS: 00000202
...
Call Trace:
TASK
neigh_table_clear+0x94/0x2d0
ndisc_cleanup+0x27/0x40 [ipv6]
inet6_init+0x21c/0x2cb [ipv6]
do_one_initcall+0xd3/0x4d0
do_init_module+0x1ae/0x670
...
Kernel panic - not syncing: Fatal exception
When ipv6 initialization fails, it will try to cleanup and calls:
neigh_table_clear()
neigh_ifdown(tbl, NULL)
pneigh_queue_purge(&tbl->proxy_queue, dev_net(dev == NULL))
# dev_net(NULL) triggers null-ptr-deref.
Fix it by passing NULL to pneigh_queue_purge() in neigh_ifdown() if dev
is NULL, to make kernel not panic immediately.
-
CVE-2022-49903
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix WARNING in ip6_route_net_exit_late()
During the initialization of ip6_route_net_init_late(), if file
ipv6_route or rt6_stats fails to be created, the initialization is
successful by default. Therefore, the ipv6_route or rt6_stats file
doesn't be found during the remove in ip6_route_net_exit_late(). It
will cause WRNING.
The following is the stack information:
name 'rt6_stats'
WARNING: CPU: 0 PID: 9 at fs/proc/generic.c:712 remove_proc_entry+0x389/0x460
Modules linked in:
Workqueue: netns cleanup_net
RIP: 0010:remove_proc_entry+0x389/0x460
PKRU: 55555554
Call Trace:
TASK
ops_exit_list+0xb0/0x170
cleanup_net+0x4ea/0xb00
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
-
CVE-2022-49902
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
block: Fix possible memory leak for rq_wb on add_disk failure
kmemleak reported memory leaks in device_add_disk():
kmemleak: 3 new suspected memory leaks
unreferenced object 0xffff88800f420800 (size 512):
comm "modprobe", pid 4275, jiffies 4295639067 (age 223.512s)
hex dump (first 32 bytes):
04 00 00 00 08 00 00 00 01 00 00 00 00 00 00 00 ................
00 e1 f5 05 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[00000000d3662699] kmalloc_trace+0x26/0x60
[<00000000edc7aadc>] wbt_init+0x50/0x6f0
[<0000000069601d16>] wbt_enable_default+0x157/0x1c0
[<0000000028fc393f>] blk_register_queue+0x2a4/0x420
[<000000007345a042>] device_add_disk+0x6fd/0xe40
[<0000000060e6aab0>] nbd_dev_add+0x828/0xbf0 [nbd]
...
It is because the memory allocated in wbt_enable_default() is not
released in device_add_disk() error path.
Normally, these memory are freed in:
del_gendisk()
rq_qos_exit()
rqos->ops->exit(rqos);
wbt_exit()
So rq_qos_exit() is called to free the rq_wb memory for wbt_init().
However in the error path of device_add_disk(), only
blk_unregister_queue() is called and make rq_wb memory leaked.
Add rq_qos_exit() to the error path to fix it.