-
CVE-2025-3517
•
published on May 1, 2025
Incorrect privilege assignment in PAM JIT elevation feature in Devolutions Server 2025.1.5.0 and earlier allows a PAM user to elevate a previously configured user configured in a PAM JIT account via failure to update the internal account’s SID when updating the username.
-
CVE-2025-35975
•
published on May 1, 2025
MicroDicom DICOM Viewer is vulnerable to an out-of-bounds write which may allow an attacker to execute arbitrary code. The user must open a malicious DCM file for exploitation.
-
CVE-2025-46568
•
published on May 1, 2025
Stirling-PDF is a locally hosted web application that allows you to perform various operations on PDF files. Prior to version 0.45.0, Stirling-PDF is vulnerable to SSRF-induced arbitrary file read. WeasyPrint redefines a set of HTML tags, including img, embed, object, and others. The references to several files inside, allow the attachment of content from any webpage or local file to a PDF. This allows the attacker to read any file on the server, including sensitive files and configuration files. All users utilizing this feature will be affected. This issue has been patched in version 0.45.0.
-
CVE-2025-46567
•
published on May 1, 2025
LLama Factory enables fine-tuning of large language models. Prior to version 1.0.0, a critical vulnerability exists in the `llamafy_baichuan2.py` script of the LLaMA-Factory project. The script performs insecure deserialization using `torch.load()` on user-supplied `.bin` files from an input directory. An attacker can exploit this behavior by crafting a malicious `.bin` file that executes arbitrary commands during deserialization. This issue has been patched in version 1.0.0.
-
CVE-2025-46566
•
published on May 1, 2025
DataEase is an open-source BI tool alternative to Tableau. Prior to version 2.10.9, authenticated users can complete RCE through the backend JDBC link. This issue has been patched in version 2.10.9.
-
CVE-2025-46565
•
published on May 1, 2025
Vite is a frontend tooling framework for javascript. Prior to versions 6.3.4, 6.2.7, 6.1.6, 5.4.19, and 4.5.14, the contents of files in the project root that are denied by a file matching pattern can be returned to the browser. Only apps explicitly exposing the Vite dev server to the network (using --host or server.host config option) are affected. Only files that are under project root and are denied by a file matching pattern can be bypassed. `server.fs.deny` can contain patterns matching against files (by default it includes .env, .env.*, *.{crt,pem} as such patterns). These patterns were able to bypass for files under `root` by using a combination of slash and dot (/.). This issue has been patched in versions 6.3.4, 6.2.7, 6.1.6, 5.4.19, and 4.5.14.
-
CVE-2025-46345
•
published on May 1, 2025
Auth0 Account Link Extension is an extension aimed to help link accounts easily. Versions 2.3.4 to 2.6.6 do not verify the signature of the provided JWT. This allows the user the ability to supply a forged token and the potential to access user information without proper authorization. This issue has been patched in versions 2.6.7, 2.7.0, and 3.0.0. It is recommended to upgrade to version 3.0.0 or greater.
-
CVE-2025-46337
•
published on May 1, 2025
ADOdb is a PHP database class library that provides abstractions for performing queries and managing databases. Prior to version 5.22.9, improper escaping of a query parameter may allow an attacker to execute arbitrary SQL statements when the code using ADOdb connects to a PostgreSQL database and calls pg_insert_id() with user-supplied data. This issue has been patched in version 5.22.9.
-
CVE-2025-4173
•
published on May 1, 2025
A vulnerability classified as critical was found in SourceCodester Online Eyewear Shop 1.0. Affected by this vulnerability is the function delete_cart of the file /oews/classes/Master.php?f=delete_cart. The manipulation of the argument ID leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
-
CVE-2025-23246
•
published on May 1, 2025
NVIDIA vGPU software for Windows and Linux contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it allows a guest to consume uncontrolled resources. A successful exploit of this vulnerability might lead to denial of service.
-
CVE-2022-49931
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
IB/hfi1: Correctly move list in sc_disable()
Commit 13bac861952a ("IB/hfi1: Fix abba locking issue with sc_disable()")
incorrectly tries to move a list from one list head to another. The
result is a kernel crash.
The crash is triggered when a link goes down and there are waiters for a
send to complete. The following signature is seen:
BUG: kernel NULL pointer dereference, address: 0000000000000030
[...]
Call Trace:
sc_disable+0x1ba/0x240 [hfi1]
pio_freeze+0x3d/0x60 [hfi1]
handle_freeze+0x27/0x1b0 [hfi1]
process_one_work+0x1b0/0x380
? process_one_work+0x380/0x380
worker_thread+0x30/0x360
? process_one_work+0x380/0x380
kthread+0xd7/0x100
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
The fix is to use the correct call to move the list.
-
CVE-2022-49930
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix NULL pointer problem in free_mr_init()
Lock grab occurs in a concurrent scenario, resulting in stepping on a NULL
pointer. It should be init mutex_init() first before use the lock.
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Call trace:
__mutex_lock.constprop.0+0xd0/0x5c0
__mutex_lock_slowpath+0x1c/0x2c
mutex_lock+0x44/0x50
free_mr_send_cmd_to_hw+0x7c/0x1c0 [hns_roce_hw_v2]
hns_roce_v2_dereg_mr+0x30/0x40 [hns_roce_hw_v2]
hns_roce_dereg_mr+0x4c/0x130 [hns_roce_hw_v2]
ib_dereg_mr_user+0x54/0x124
uverbs_free_mr+0x24/0x30
destroy_hw_idr_uobject+0x38/0x74
uverbs_destroy_uobject+0x48/0x1c4
uobj_destroy+0x74/0xcc
ib_uverbs_cmd_verbs+0x368/0xbb0
ib_uverbs_ioctl+0xec/0x1a4
__arm64_sys_ioctl+0xb4/0x100
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0x58/0x190
do_el0_svc+0x30/0x90
el0_svc+0x2c/0xb4
el0t_64_sync_handler+0x1a4/0x1b0
el0t_64_sync+0x19c/0x1a0
-
CVE-2022-49929
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix mr leak in RESPST_ERR_RNR
rxe_recheck_mr() will increase mr's ref_cnt, so we should call rxe_put(mr)
to drop mr's ref_cnt in RESPST_ERR_RNR to avoid below warning:
WARNING: CPU: 0 PID: 4156 at drivers/infiniband/sw/rxe/rxe_pool.c:259 __rxe_cleanup+0x1df/0x240 [rdma_rxe]
...
Call Trace:
rxe_dereg_mr+0x4c/0x60 [rdma_rxe]
ib_dereg_mr_user+0xa8/0x200 [ib_core]
ib_mr_pool_destroy+0x77/0xb0 [ib_core]
nvme_rdma_destroy_queue_ib+0x89/0x240 [nvme_rdma]
nvme_rdma_free_queue+0x40/0x50 [nvme_rdma]
nvme_rdma_teardown_io_queues.part.0+0xc3/0x120 [nvme_rdma]
nvme_rdma_error_recovery_work+0x4d/0xf0 [nvme_rdma]
process_one_work+0x582/0xa40
? pwq_dec_nr_in_flight+0x100/0x100
? rwlock_bug.part.0+0x60/0x60
worker_thread+0x2a9/0x700
? process_one_work+0xa40/0xa40
kthread+0x168/0x1a0
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x22/0x30
-
CVE-2022-49928
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: Fix null-ptr-deref when xps sysfs alloc failed
There is a null-ptr-deref when xps sysfs alloc failed:
BUG: KASAN: null-ptr-deref in sysfs_do_create_link_sd+0x40/0xd0
Read of size 8 at addr 0000000000000030 by task gssproxy/457
CPU: 5 PID: 457 Comm: gssproxy Not tainted 6.0.0-09040-g02357b27ee03 #9
Call Trace:
TASK
dump_stack_lvl+0x34/0x44
kasan_report+0xa3/0x120
sysfs_do_create_link_sd+0x40/0xd0
rpc_sysfs_client_setup+0x161/0x1b0
rpc_new_client+0x3fc/0x6e0
rpc_create_xprt+0x71/0x220
rpc_create+0x1d4/0x350
gssp_rpc_create+0xc3/0x160
set_gssp_clnt+0xbc/0x140
write_gssp+0x116/0x1a0
proc_reg_write+0xd6/0x130
vfs_write+0x177/0x690
ksys_write+0xb9/0x150
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
When the xprt_switch sysfs alloc failed, should not add xprt and
switch sysfs to it, otherwise, maybe null-ptr-deref; also initialize
the 'xps_sysfs' to NULL to avoid oops when destroy it.
-
CVE-2022-49927
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
nfs4: Fix kmemleak when allocate slot failed
If one of the slot allocate failed, should cleanup all the other
allocated slots, otherwise, the allocated slots will leak:
unreferenced object 0xffff8881115aa100 (size 64):
comm ""mount.nfs"", pid 679, jiffies 4294744957 (age 115.037s)
hex dump (first 32 bytes):
00 cc 19 73 81 88 ff ff 00 a0 5a 11 81 88 ff ff ...s......Z.....
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[000000007a4c434a] nfs4_find_or_create_slot+0x8e/0x130
[<000000005472a39c>] nfs4_realloc_slot_table+0x23f/0x270
[<00000000cd8ca0eb>] nfs40_init_client+0x4a/0x90
[<00000000128486db>] nfs4_init_client+0xce/0x270
[<000000008d2cacad>] nfs4_set_client+0x1a2/0x2b0
[<000000000e593b52>] nfs4_create_server+0x300/0x5f0
[<00000000e4425dd2>] nfs4_try_get_tree+0x65/0x110
[<00000000d3a6176f>] vfs_get_tree+0x41/0xf0
[<0000000016b5ad4c>] path_mount+0x9b3/0xdd0
[<00000000494cae71>] __x64_sys_mount+0x190/0x1d0
[<000000005d56bdec>] do_syscall_64+0x35/0x80
[<00000000687c9ae4>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
-
CVE-2022-49926
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net: dsa: Fix possible memory leaks in dsa_loop_init()
kmemleak reported memory leaks in dsa_loop_init():
kmemleak: 12 new suspected memory leaks
unreferenced object 0xffff8880138ce000 (size 2048):
comm "modprobe", pid 390, jiffies 4295040478 (age 238.976s)
backtrace:
[000000006a94f1d5] kmalloc_trace+0x26/0x60
[<00000000a9c44622>] phy_device_create+0x5d/0x970
[<00000000d0ee2afc>] get_phy_device+0xf3/0x2b0
[<00000000dca0c71f>] __fixed_phy_register.part.0+0x92/0x4e0
[<000000008a834798>] fixed_phy_register+0x84/0xb0
[<0000000055223fcb>] dsa_loop_init+0xa9/0x116 [dsa_loop]
...
There are two reasons for memleak in dsa_loop_init().
First, fixed_phy_register() create and register phy_device:
fixed_phy_register()
get_phy_device()
phy_device_create() # freed by phy_device_free()
phy_device_register() # freed by phy_device_remove()
But fixed_phy_unregister() only calls phy_device_remove().
So the memory allocated in phy_device_create() is leaked.
Second, when mdio_driver_register() fail in dsa_loop_init(),
it just returns and there is no cleanup for phydevs.
Fix the problems by catching the error of mdio_driver_register()
in dsa_loop_init(), then calling both fixed_phy_unregister() and
phy_device_free() to release phydevs.
Also add a function for phydevs cleanup to avoid duplacate.
-
CVE-2022-49925
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Fix null-ptr-deref in ib_core_cleanup()
KASAN reported a null-ptr-deref error:
KASAN: null-ptr-deref in range [0x0000000000000118-0x000000000000011f]
CPU: 1 PID: 379
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
RIP: 0010:destroy_workqueue+0x2f/0x740
RSP: 0018:ffff888016137df8 EFLAGS: 00000202
...
Call Trace:
ib_core_cleanup+0xa/0xa1 [ib_core]
__do_sys_delete_module.constprop.0+0x34f/0x5b0
do_syscall_64+0x3a/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7fa1a0d221b7
...
It is because the fail of roce_gid_mgmt_init() is ignored:
ib_core_init()
roce_gid_mgmt_init()
gid_cache_wq = alloc_ordered_workqueue # fail
...
ib_core_cleanup()
roce_gid_mgmt_cleanup()
destroy_workqueue(gid_cache_wq)
# destroy an unallocated wq
Fix this by catching the fail of roce_gid_mgmt_init() in ib_core_init().
-
CVE-2022-49924
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
nfc: fdp: Fix potential memory leak in fdp_nci_send()
fdp_nci_send() will call fdp_nci_i2c_write that will not free skb in
the function. As a result, when fdp_nci_i2c_write() finished, the skb
will memleak. fdp_nci_send() should free skb after fdp_nci_i2c_write()
finished.
-
CVE-2022-49923
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
nfc: nxp-nci: Fix potential memory leak in nxp_nci_send()
nxp_nci_send() will call nxp_nci_i2c_write(), and only free skb when
nxp_nci_i2c_write() failed. However, even if the nxp_nci_i2c_write()
run succeeds, the skb will not be freed in nxp_nci_i2c_write(). As the
result, the skb will memleak. nxp_nci_send() should also free the skb
when nxp_nci_i2c_write() succeeds.
-
CVE-2022-49922
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
nfc: nfcmrvl: Fix potential memory leak in nfcmrvl_i2c_nci_send()
nfcmrvl_i2c_nci_send() will be called by nfcmrvl_nci_send(), and skb
should be freed in nfcmrvl_i2c_nci_send(). However, nfcmrvl_nci_send()
will only free skb when i2c_master_send() return =0, which means skb
will memleak when i2c_master_send() failed. Free skb no matter whether
i2c_master_send() succeeds.