-
CVE-2022-49880
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix warning in 'ext4_da_release_space'
Syzkaller report issue as follows:
EXT4-fs (loop0): Free/Dirty block details
EXT4-fs (loop0): free_blocks=0
EXT4-fs (loop0): dirty_blocks=0
EXT4-fs (loop0): Block reservation details
EXT4-fs (loop0): i_reserved_data_blocks=0
EXT4-fs warning (device loop0): ext4_da_release_space:1527: ext4_da_release_space: ino 18, to_free 1 with only 0 reserved data blocks
------------[ cut here ]------------
WARNING: CPU: 0 PID: 92 at fs/ext4/inode.c:1528 ext4_da_release_space+0x25e/0x370 fs/ext4/inode.c:1524
Modules linked in:
CPU: 0 PID: 92 Comm: kworker/u4:4 Not tainted 6.0.0-syzkaller-09423-g493ffd6605b2 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022
Workqueue: writeback wb_workfn (flush-7:0)
RIP: 0010:ext4_da_release_space+0x25e/0x370 fs/ext4/inode.c:1528
RSP: 0018:ffffc900015f6c90 EFLAGS: 00010296
RAX: 42215896cd52ea00 RBX: 0000000000000000 RCX: 42215896cd52ea00
RDX: 0000000000000000 RSI: 0000000080000001 RDI: 0000000000000000
RBP: 1ffff1100e907d96 R08: ffffffff816aa79d R09: fffff520002bece5
R10: fffff520002bece5 R11: 1ffff920002bece4 R12: ffff888021fd2000
R13: ffff88807483ecb0 R14: 0000000000000001 R15: ffff88807483e740
FS: 0000000000000000(0000) GS:ffff8880b9a00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005555569ba628 CR3: 000000000c88e000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
TASK
ext4_es_remove_extent+0x1ab/0x260 fs/ext4/extents_status.c:1461
mpage_release_unused_pages+0x24d/0xef0 fs/ext4/inode.c:1589
ext4_writepages+0x12eb/0x3be0 fs/ext4/inode.c:2852
do_writepages+0x3c3/0x680 mm/page-writeback.c:2469
__writeback_single_inode+0xd1/0x670 fs/fs-writeback.c:1587
writeback_sb_inodes+0xb3b/0x18f0 fs/fs-writeback.c:1870
wb_writeback+0x41f/0x7b0 fs/fs-writeback.c:2044
wb_do_writeback fs/fs-writeback.c:2187 [inline]
wb_workfn+0x3cb/0xef0 fs/fs-writeback.c:2227
process_one_work+0x877/0xdb0 kernel/workqueue.c:2289
worker_thread+0xb14/0x1330 kernel/workqueue.c:2436
kthread+0x266/0x300 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
Above issue may happens as follows:
ext4_da_write_begin
ext4_create_inline_data
ext4_clear_inode_flag(inode, EXT4_INODE_EXTENTS);
ext4_set_inode_flag(inode, EXT4_INODE_INLINE_DATA);
__ext4_ioctl
ext4_ext_migrate -> will lead to eh->eh_entries not zero, and set extent flag
ext4_da_write_begin
ext4_da_convert_inline_data_to_extent
ext4_da_write_inline_data_begin
ext4_da_map_blocks
ext4_insert_delayed_block
if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk))
if (!ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk)); -> will return 1
allocated = true;
ext4_es_insert_delayed_block(inode, lblk, allocated);
ext4_writepages
mpage_map_and_submit_extent(handle, &mpd, &give_up_on_write); -> return -ENOSPC
mpage_release_unused_pages(&mpd, give_up_on_write); -> give_up_on_write == 1
ext4_es_remove_extent
ext4_da_release_space(inode, reserved);
if (unlikely(to_free > ei->i_reserved_data_blocks))
-> to_free == 1 but ei->i_reserved_data_blocks == 0
-> then trigger warning as above
To solve above issue, forbid inode do migrate which has inline data.
-
CVE-2022-49879
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix BUG_ON() when directory entry has invalid rec_len
The rec_len field in the directory entry has to be a multiple of 4. A
corrupted filesystem image can be used to hit a BUG() in
ext4_rec_len_to_disk(), called from make_indexed_dir().
------------[ cut here ]------------
kernel BUG at fs/ext4/ext4.h:2413!
...
RIP: 0010:make_indexed_dir+0x53f/0x5f0
...
Call Trace:
TASK
? add_dirent_to_buf+0x1b2/0x200
ext4_add_entry+0x36e/0x480
ext4_add_nondir+0x2b/0xc0
ext4_create+0x163/0x200
path_openat+0x635/0xe90
do_filp_open+0xb4/0x160
? __create_object.isra.0+0x1de/0x3b0
? _raw_spin_unlock+0x12/0x30
do_sys_openat2+0x91/0x150
__x64_sys_open+0x6c/0xa0
do_syscall_64+0x3c/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
The fix simply adds a call to ext4_check_dir_entry() to validate the
directory entry, returning -EFSCORRUPTED if the entry is invalid.
-
CVE-2022-49878
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
bpf, verifier: Fix memory leak in array reallocation for stack state
If an error (NULL) is returned by krealloc(), callers of realloc_array()
were setting their allocation pointers to NULL, but on error krealloc()
does not touch the original allocation. This would result in a memory
resource leak. Instead, free the old allocation on the error handling
path.
The memory leak information is as follows as also reported by Zhengchao:
unreferenced object 0xffff888019801800 (size 256):
comm "bpf_repo", pid 6490, jiffies 4294959200 (age 17.170s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[00000000b211474b] __kmalloc_node_track_caller+0x45/0xc0
[<0000000086712a0b>] krealloc+0x83/0xd0
[<00000000139aab02>] realloc_array+0x82/0xe2
[<00000000b1ca41d1>] grow_stack_state+0xfb/0x186
[<00000000cd6f36d2>] check_mem_access.cold+0x141/0x1341
[<0000000081780455>] do_check_common+0x5358/0xb350
[<0000000015f6b091>] bpf_check.cold+0xc3/0x29d
[<000000002973c690>] bpf_prog_load+0x13db/0x2240
[<00000000028d1644>] __sys_bpf+0x1605/0x4ce0
[<00000000053f29bd>] __x64_sys_bpf+0x75/0xb0
[<0000000056fedaf5>] do_syscall_64+0x35/0x80
[<000000002bd58261>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
-
CVE-2022-49877
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix the sk-sk_forward_alloc warning of sk_stream_kill_queues
When running `test_sockmap` selftests, the following warning appears:
WARNING: CPU: 2 PID: 197 at net/core/stream.c:205 sk_stream_kill_queues+0xd3/0xf0
Call Trace:
TASK>
inet_csk_destroy_sock+0x55/0x110
tcp_rcv_state_process+0xd28/0x1380
? tcp_v4_do_rcv+0x77/0x2c0
tcp_v4_do_rcv+0x77/0x2c0
__release_sock+0x106/0x130
__tcp_close+0x1a7/0x4e0
tcp_close+0x20/0x70
inet_release+0x3c/0x80
__sock_release+0x3a/0xb0
sock_close+0x14/0x20
__fput+0xa3/0x260
task_work_run+0x59/0xb0
exit_to_user_mode_prepare+0x1b3/0x1c0
syscall_exit_to_user_mode+0x19/0x50
do_syscall_64+0x48/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
The root case is in commit 84472b436e76 ("bpf, sockmap: Fix more uncharged
while msg has more_data"), where I used msg->sg.size to replace the tosend,
causing breakage:
if (msg->apply_bytes && msg->apply_bytes < tosend)
tosend = psock->apply_bytes;
-
CVE-2022-49876
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix general-protection-fault in ieee80211_subif_start_xmit()
When device is running and the interface status is changed, the gpf issue
is triggered. The problem triggering process is as follows:
Thread A: Thread B
ieee80211_runtime_change_iftype() process_one_work()
... ...
ieee80211_do_stop() ...
... ...
sdata-bss = NULL ...
... ieee80211_subif_start_xmit()
ieee80211_multicast_to_unicast
//!sdata->bss->multicast_to_unicast
cause gpf issue
When the interface status is changed, the sending queue continues to send
packets. After the bss is set to NULL, the bss is accessed. As a result,
this causes a general-protection-fault issue.
The following is the stack information:
general protection fault, probably for non-canonical address
0xdffffc000000002f: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000178-0x000000000000017f]
Workqueue: mld mld_ifc_work
RIP: 0010:ieee80211_subif_start_xmit+0x25b/0x1310
Call Trace:
TASK>
dev_hard_start_xmit+0x1be/0x990
__dev_queue_xmit+0x2c9a/0x3b60
ip6_finish_output2+0xf92/0x1520
ip6_finish_output+0x6af/0x11e0
ip6_output+0x1ed/0x540
mld_sendpack+0xa09/0xe70
mld_ifc_work+0x71c/0xdb0
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
-
CVE-2022-49875
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
bpftool: Fix NULL pointer dereference when pin {PROG, MAP, LINK} without FILE
When using bpftool to pin {PROG, MAP, LINK} without FILE,
segmentation fault will occur. The reson is that the lack
of FILE will cause strlen to trigger NULL pointer dereference.
The corresponding stacktrace is shown below:
do_pin
do_pin_any
do_pin_fd
mount_bpffs_for_pin
strlen(name) - NULL pointer dereference
Fix it by adding validation to the common process.
-
CVE-2022-49874
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
HID: hyperv: fix possible memory leak in mousevsc_probe()
If hid_add_device() returns error, it should call hid_destroy_device()
to free hid_dev which is allocated in hid_allocate_device().
-
CVE-2022-49873
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix wrong reg type conversion in release_reference()
Some helper functions will allocate memory. To avoid memory leaks, the
verifier requires the eBPF program to release these memories by calling
the corresponding helper functions.
When a resource is released, all pointer registers corresponding to the
resource should be invalidated. The verifier use release_references() to
do this job, by apply __mark_reg_unknown() to each relevant register.
It will give these registers the type of SCALAR_VALUE. A register that
will contain a pointer value at runtime, but of type SCALAR_VALUE, which
may allow the unprivileged user to get a kernel pointer by storing this
register into a map.
Using __mark_reg_not_init() while NOT allow_ptr_leaks can mitigate this
problem.
-
CVE-2022-49872
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net: gso: fix panic on frag_list with mixed head alloc types
Since commit 3dcbdb134f32 ("net: gso: Fix skb_segment splat when
splitting gso_size mangled skb having linear-headed frag_list"), it is
allowed to change gso_size of a GRO packet. However, that commit assumes
that "checking the first list_skb member suffices; i.e if either of the
list_skb members have non head_frag head, then the first one has too".
It turns out this assumption does not hold. We've seen BUG_ON being hit
in skb_segment when skbs on the frag_list had differing head_frag with
the vmxnet3 driver. This happens because __netdev_alloc_skb and
__napi_alloc_skb can return a skb that is page backed or kmalloced
depending on the requested size. As the result, the last small skb in
the GRO packet can be kmalloced.
There are three different locations where this can be fixed:
(1) We could check head_frag in GRO and not allow GROing skbs with
different head_frag. However, that would lead to performance
regression on normal forward paths with unmodified gso_size, where
!head_frag in the last packet is not a problem.
(2) Set a flag in bpf_skb_net_grow and bpf_skb_net_shrink indicating
that NETIF_F_SG is undesirable. That would need to eat a bit in
sk_buff. Furthermore, that flag can be unset when all skbs on the
frag_list are page backed. To retain good performance,
bpf_skb_net_grow/shrink would have to walk the frag_list.
(3) Walk the frag_list in skb_segment when determining whether
NETIF_F_SG should be cleared. This of course slows things down.
This patch implements (3). To limit the performance impact in
skb_segment, the list is walked only for skbs with SKB_GSO_DODGY set
that have gso_size changed. Normal paths thus will not hit it.
We could check only the last skb but since we need to walk the whole
list anyway, let's stay on the safe side.
-
CVE-2022-49871
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net: tun: Fix memory leaks of napi_get_frags
kmemleak reports after running test_progs:
unreferenced object 0xffff8881b1672dc0 (size 232):
comm "test_progs", pid 394388, jiffies 4354712116 (age 841.975s)
hex dump (first 32 bytes):
e0 84 d7 a8 81 88 ff ff 80 2c 67 b1 81 88 ff ff .........,g.....
00 40 c5 9b 81 88 ff ff 00 00 00 00 00 00 00 00 .@..............
backtrace:
[00000000c8f01748] napi_skb_cache_get+0xd4/0x150
[<0000000041c7fc09>] __napi_build_skb+0x15/0x50
[<00000000431c7079>] __napi_alloc_skb+0x26e/0x540
[<000000003ecfa30e>] napi_get_frags+0x59/0x140
[<0000000099b2199e>] tun_get_user+0x183d/0x3bb0 [tun]
[<000000008a5adef0>] tun_chr_write_iter+0xc0/0x1b1 [tun]
[<0000000049993ff4>] do_iter_readv_writev+0x19f/0x320
[<000000008f338ea2>] do_iter_write+0x135/0x630
[<000000008a3377a4>] vfs_writev+0x12e/0x440
[<00000000a6b5639a>] do_writev+0x104/0x280
[<00000000ccf065d8>] do_syscall_64+0x3b/0x90
[<00000000d776e329>] entry_SYSCALL_64_after_hwframe+0x63/0xcd
The issue occurs in the following scenarios:
tun_get_user()
napi_gro_frags()
napi_frags_finish()
case GRO_NORMAL:
gro_normal_one()
list_add_tail(&skb->list, &napi->rx_list);
<-- While napi->rx_count < READ_ONCE(gro_normal_batch),
<-- gro_normal_list() is not called, napi->rx_list is not empty
<-- not ask to complete the gro work, will cause memory leaks in
<-- following tun_napi_del()
...
tun_napi_del()
netif_napi_del()
__netif_napi_del()
<-- &napi->rx_list is not empty, which caused memory leaks
To fix, add napi_complete() after napi_gro_frags().
-
CVE-2022-49870
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
capabilities: fix undefined behavior in bit shift for CAP_TO_MASK
Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:
UBSAN: shift-out-of-bounds in security/commoncap.c:1252:2
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
TASK
dump_stack_lvl+0x7d/0xa5
dump_stack+0x15/0x1b
ubsan_epilogue+0xe/0x4e
__ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
cap_task_prctl+0x561/0x6f0
security_task_prctl+0x5a/0xb0
__x64_sys_prctl+0x61/0x8f0
do_syscall_64+0x58/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-
CVE-2022-49869
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
bnxt_en: Fix possible crash in bnxt_hwrm_set_coal()
During the error recovery sequence, the rtnl_lock is not held for the
entire duration and some datastructures may be freed during the sequence.
Check for the BNXT_STATE_OPEN flag instead of netif_running() to ensure
that the device is fully operational before proceeding to reconfigure
the coalescing settings.
This will fix a possible crash like this:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 10 PID: 181276 Comm: ethtool Kdump: loaded Tainted: G IOE --------- - - 4.18.0-348.el8.x86_64 #1
Hardware name: Dell Inc. PowerEdge R740/0F9N89, BIOS 2.3.10 08/15/2019
RIP: 0010:bnxt_hwrm_set_coal+0x1fb/0x2a0 [bnxt_en]
Code: c2 66 83 4e 22 08 66 89 46 1c e8 10 cb 00 00 41 83 c6 01 44 39 b3 68 01 00 00 0f 8e a3 00 00 00 48 8b 93 c8 00 00 00 49 63 c6 48 8b 2c c2 48 8b 85 b8 02 00 00 48 85 c0 74 2e 48 8b 74 24 08 f6
RSP: 0018:ffffb11c8dcaba50 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff8d168a8b0ac0 RCX: 00000000000000c5
RDX: 0000000000000000 RSI: ffff8d162f72c000 RDI: ffff8d168a8b0b28
RBP: 0000000000000000 R08: b6e1f68a12e9a7eb R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000037 R12: ffff8d168a8b109c
R13: ffff8d168a8b10aa R14: 0000000000000000 R15: ffffffffc01ac4e0
FS: 00007f3852e4c740(0000) GS:ffff8d24c0080000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 000000041b3ee003 CR4: 00000000007706e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
ethnl_set_coalesce+0x3ce/0x4c0
genl_family_rcv_msg_doit.isra.15+0x10f/0x150
genl_family_rcv_msg+0xb3/0x160
? coalesce_fill_reply+0x480/0x480
genl_rcv_msg+0x47/0x90
? genl_family_rcv_msg+0x160/0x160
netlink_rcv_skb+0x4c/0x120
genl_rcv+0x24/0x40
netlink_unicast+0x196/0x230
netlink_sendmsg+0x204/0x3d0
sock_sendmsg+0x4c/0x50
__sys_sendto+0xee/0x160
? syscall_trace_enter+0x1d3/0x2c0
? __audit_syscall_exit+0x249/0x2a0
__x64_sys_sendto+0x24/0x30
do_syscall_64+0x5b/0x1a0
entry_SYSCALL_64_after_hwframe+0x65/0xca
RIP: 0033:0x7f38524163bb
-
CVE-2022-49868
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
phy: ralink: mt7621-pci: add sentinel to quirks table
With mt7621 soc_dev_attr fixed to register the soc as a device,
kernel will experience an oops in soc_device_match_attr
This quirk test was introduced in the staging driver in
commit 9445ccb3714c ("staging: mt7621-pci-phy: add quirks for 'E2'
revision using 'soc_device_attribute'"). The staging driver was removed,
and later re-added in commit d87da32372a0 ("phy: ralink: Add PHY driver
for MT7621 PCIe PHY") for kernel 5.11
-
CVE-2022-49867
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net: wwan: iosm: fix memory leak in ipc_wwan_dellink
IOSM driver registers network device without setting the
needs_free_netdev flag, and does NOT call free_netdev() when
unregisters network device, which causes a memory leak.
This patch sets needs_free_netdev to true when registers
network device, which makes netdev subsystem call free_netdev()
automatically after unregister_netdevice().
-
CVE-2022-49866
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net: wwan: mhi: fix memory leak in mhi_mbim_dellink
MHI driver registers network device without setting the
needs_free_netdev flag, and does NOT call free_netdev() when
unregisters network device, which causes a memory leak.
This patch sets needs_free_netdev to true when registers
network device, which makes netdev subsystem call free_netdev()
automatically after unregister_netdevice().
-
CVE-2022-49865
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
ipv6: addrlabel: fix infoleak when sending struct ifaddrlblmsg to network
When copying a `struct ifaddrlblmsg` to the network, __ifal_reserved
remained uninitialized, resulting in a 1-byte infoleak:
BUG: KMSAN: kernel-network-infoleak in __netdev_start_xmit ./include/linux/netdevice.h:4841
__netdev_start_xmit ./include/linux/netdevice.h:4841
netdev_start_xmit ./include/linux/netdevice.h:4857
xmit_one net/core/dev.c:3590
dev_hard_start_xmit+0x1dc/0x800 net/core/dev.c:3606
__dev_queue_xmit+0x17e8/0x4350 net/core/dev.c:4256
dev_queue_xmit ./include/linux/netdevice.h:3009
__netlink_deliver_tap_skb net/netlink/af_netlink.c:307
__netlink_deliver_tap+0x728/0xad0 net/netlink/af_netlink.c:325
netlink_deliver_tap net/netlink/af_netlink.c:338
__netlink_sendskb net/netlink/af_netlink.c:1263
netlink_sendskb+0x1d9/0x200 net/netlink/af_netlink.c:1272
netlink_unicast+0x56d/0xf50 net/netlink/af_netlink.c:1360
nlmsg_unicast ./include/net/netlink.h:1061
rtnl_unicast+0x5a/0x80 net/core/rtnetlink.c:758
ip6addrlbl_get+0xfad/0x10f0 net/ipv6/addrlabel.c:628
rtnetlink_rcv_msg+0xb33/0x1570 net/core/rtnetlink.c:6082
...
Uninit was created at:
slab_post_alloc_hook+0x118/0xb00 mm/slab.h:742
slab_alloc_node mm/slub.c:3398
__kmem_cache_alloc_node+0x4f2/0x930 mm/slub.c:3437
__do_kmalloc_node mm/slab_common.c:954
__kmalloc_node_track_caller+0x117/0x3d0 mm/slab_common.c:975
kmalloc_reserve net/core/skbuff.c:437
__alloc_skb+0x27a/0xab0 net/core/skbuff.c:509
alloc_skb ./include/linux/skbuff.h:1267
nlmsg_new ./include/net/netlink.h:964
ip6addrlbl_get+0x490/0x10f0 net/ipv6/addrlabel.c:608
rtnetlink_rcv_msg+0xb33/0x1570 net/core/rtnetlink.c:6082
netlink_rcv_skb+0x299/0x550 net/netlink/af_netlink.c:2540
rtnetlink_rcv+0x26/0x30 net/core/rtnetlink.c:6109
netlink_unicast_kernel net/netlink/af_netlink.c:1319
netlink_unicast+0x9ab/0xf50 net/netlink/af_netlink.c:1345
netlink_sendmsg+0xebc/0x10f0 net/netlink/af_netlink.c:1921
...
This patch ensures that the reserved field is always initialized.
-
CVE-2022-49864
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: Fix NULL pointer dereference in svm_migrate_to_ram()
./drivers/gpu/drm/amd/amdkfd/kfd_migrate.c:985:58-62: ERROR: p is NULL but dereferenced.
-
CVE-2022-49863
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
can: af_can: fix NULL pointer dereference in can_rx_register()
It causes NULL pointer dereference when testing as following:
(a) use syscall(__NR_socket, 0x10ul, 3ul, 0) to create netlink socket.
(b) use syscall(__NR_sendmsg, ...) to create bond link device and vxcan
link device, and bind vxcan device to bond device (can also use
ifenslave command to bind vxcan device to bond device).
(c) use syscall(__NR_socket, 0x1dul, 3ul, 1) to create CAN socket.
(d) use syscall(__NR_bind, ...) to bind the bond device to CAN socket.
The bond device invokes the can-raw protocol registration interface to
receive CAN packets. However, ml_priv is not allocated to the dev,
dev_rcv_lists is assigned to NULL in can_rx_register(). In this case,
it will occur the NULL pointer dereference issue.
The following is the stack information:
BUG: kernel NULL pointer dereference, address: 0000000000000008
PGD 122a4067 P4D 122a4067 PUD 1223c067 PMD 0
Oops: 0000 [#1] PREEMPT SMP
RIP: 0010:can_rx_register+0x12d/0x1e0
Call Trace:
TASK
raw_enable_filters+0x8d/0x120
raw_enable_allfilters+0x3b/0x130
raw_bind+0x118/0x4f0
__sys_bind+0x163/0x1a0
__x64_sys_bind+0x1e/0x30
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
-
CVE-2022-49862
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
tipc: fix the msg-req tlv len check in tipc_nl_compat_name_table_dump_header
This is a follow-up for commit 974cb0e3e7c9 ("tipc: fix uninit-value
in tipc_nl_compat_name_table_dump") where it should have type casted
sizeof(..) to int to work when TLV_GET_DATA_LEN() returns a negative
value.
syzbot reported a call trace because of it:
BUG: KMSAN: uninit-value in ...
tipc_nl_compat_name_table_dump+0x841/0xea0 net/tipc/netlink_compat.c:934
__tipc_nl_compat_dumpit+0xab2/0x1320 net/tipc/netlink_compat.c:238
tipc_nl_compat_dumpit+0x991/0xb50 net/tipc/netlink_compat.c:321
tipc_nl_compat_recv+0xb6e/0x1640 net/tipc/netlink_compat.c:1324
genl_family_rcv_msg_doit net/netlink/genetlink.c:731 [inline]
genl_family_rcv_msg net/netlink/genetlink.c:775 [inline]
genl_rcv_msg+0x103f/0x1260 net/netlink/genetlink.c:792
netlink_rcv_skb+0x3a5/0x6c0 net/netlink/af_netlink.c:2501
genl_rcv+0x3c/0x50 net/netlink/genetlink.c:803
netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
netlink_unicast+0xf3b/0x1270 net/netlink/af_netlink.c:1345
netlink_sendmsg+0x1288/0x1440 net/netlink/af_netlink.c:1921
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
-
CVE-2022-49861
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: mv_xor_v2: Fix a resource leak in mv_xor_v2_remove()
A clk_prepare_enable() call in the probe is not balanced by a corresponding
clk_disable_unprepare() in the remove function.
Add the missing call.