-
CVE-2025-37740
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
jfs: add sanity check for agwidth in dbMount
The width in dmapctl of the AG is zero, it trigger a divide error when
calculating the control page level in dbAllocAG.
To avoid this issue, add a check for agwidth in dbAllocAG.
-
CVE-2025-37739
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid out-of-bounds access in f2fs_truncate_inode_blocks()
syzbot reports an UBSAN issue as below:
------------[ cut here ]------------
UBSAN: array-index-out-of-bounds in fs/f2fs/node.h:381:10
index 18446744073709550692 is out of range for type '__le32[5]' (aka 'unsigned int[5]')
CPU: 0 UID: 0 PID: 5318 Comm: syz.0.0 Not tainted 6.14.0-rc3-syzkaller-00060-g6537cfb395f3 #0
Call Trace:
TASK
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:231 [inline]
__ubsan_handle_out_of_bounds+0x121/0x150 lib/ubsan.c:429
get_nid fs/f2fs/node.h:381 [inline]
f2fs_truncate_inode_blocks+0xa5e/0xf60 fs/f2fs/node.c:1181
f2fs_do_truncate_blocks+0x782/0x1030 fs/f2fs/file.c:808
f2fs_truncate_blocks+0x10d/0x300 fs/f2fs/file.c:836
f2fs_truncate+0x417/0x720 fs/f2fs/file.c:886
f2fs_file_write_iter+0x1bdb/0x2550 fs/f2fs/file.c:5093
aio_write+0x56b/0x7c0 fs/aio.c:1633
io_submit_one+0x8a7/0x18a0 fs/aio.c:2052
__do_sys_io_submit fs/aio.c:2111 [inline]
__se_sys_io_submit+0x171/0x2e0 fs/aio.c:2081
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f238798cde9
index 18446744073709550692 (decimal, unsigned long long)
= 0xfffffffffffffc64 (hexadecimal, unsigned long long)
= -924 (decimal, long long)
In f2fs_truncate_inode_blocks(), UBSAN detects that get_nid() tries to
access .i_nid[-924], it means both offset[0] and level should zero.
The possible case should be in f2fs_do_truncate_blocks(), we try to
truncate inode size to zero, however, dn.ofs_in_node is zero and
dn.node_page is not an inode page, so it fails to truncate inode page,
and then pass zeroed free_from to f2fs_truncate_inode_blocks(), result
in this issue.
if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
f2fs_truncate_data_blocks_range(&dn, count);
free_from += count;
}
I guess the reason why dn.node_page is not an inode page could be: there
are multiple nat entries share the same node block address, once the node
block address was reused, f2fs_get_node_page() may load a non-inode block.
Let's add a sanity check for such condition to avoid out-of-bounds access
issue.
-
CVE-2025-37738
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
ext4: ignore xattrs past end
Once inside 'ext4_xattr_inode_dec_ref_all' we should
ignore xattrs entries past the 'end' entry.
This fixes the following KASAN reported issue:
==================================================================
BUG: KASAN: slab-use-after-free in ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
Read of size 4 at addr ffff888012c120c4 by task repro/2065
CPU: 1 UID: 0 PID: 2065 Comm: repro Not tainted 6.13.0-rc2+ #11
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
Call Trace:
TASK
dump_stack_lvl+0x1fd/0x300
? tcp_gro_dev_warn+0x260/0x260
? _printk+0xc0/0x100
? read_lock_is_recursive+0x10/0x10
? irq_work_queue+0x72/0xf0
? __virt_addr_valid+0x17b/0x4b0
print_address_description+0x78/0x390
print_report+0x107/0x1f0
? __virt_addr_valid+0x17b/0x4b0
? __virt_addr_valid+0x3ff/0x4b0
? __phys_addr+0xb5/0x160
? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
kasan_report+0xcc/0x100
? ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
ext4_xattr_inode_dec_ref_all+0xb8c/0xe90
? ext4_xattr_delete_inode+0xd30/0xd30
? __ext4_journal_ensure_credits+0x5f0/0x5f0
? __ext4_journal_ensure_credits+0x2b/0x5f0
? inode_update_timestamps+0x410/0x410
ext4_xattr_delete_inode+0xb64/0xd30
? ext4_truncate+0xb70/0xdc0
? ext4_expand_extra_isize_ea+0x1d20/0x1d20
? __ext4_mark_inode_dirty+0x670/0x670
? ext4_journal_check_start+0x16f/0x240
? ext4_inode_is_fast_symlink+0x2f2/0x3a0
ext4_evict_inode+0xc8c/0xff0
? ext4_inode_is_fast_symlink+0x3a0/0x3a0
? do_raw_spin_unlock+0x53/0x8a0
? ext4_inode_is_fast_symlink+0x3a0/0x3a0
evict+0x4ac/0x950
? proc_nr_inodes+0x310/0x310
? trace_ext4_drop_inode+0xa2/0x220
? _raw_spin_unlock+0x1a/0x30
? iput+0x4cb/0x7e0
do_unlinkat+0x495/0x7c0
? try_break_deleg+0x120/0x120
? 0xffffffff81000000
? __check_object_size+0x15a/0x210
? strncpy_from_user+0x13e/0x250
? getname_flags+0x1dc/0x530
__x64_sys_unlinkat+0xc8/0xf0
do_syscall_64+0x65/0x110
entry_SYSCALL_64_after_hwframe+0x67/0x6f
RIP: 0033:0x434ffd
Code: 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 8
RSP: 002b:00007ffc50fa7b28 EFLAGS: 00000246 ORIG_RAX: 0000000000000107
RAX: ffffffffffffffda RBX: 00007ffc50fa7e18 RCX: 0000000000434ffd
RDX: 0000000000000000 RSI: 0000000020000240 RDI: 0000000000000005
RBP: 00007ffc50fa7be0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000001
R13: 00007ffc50fa7e08 R14: 00000000004bbf30 R15: 0000000000000001
The buggy address belongs to the object at ffff888012c12000
which belongs to the cache filp of size 360
The buggy address is located 196 bytes inside of
freed 360-byte region [ffff888012c12000, ffff888012c12168)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x12c12
head: order:1 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
flags: 0x40(head|node=0|zone=0)
page_type: f5(slab)
raw: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004
raw: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000
head: 0000000000000040 ffff888000ad7640 ffffea0000497a00 dead000000000004
head: 0000000000000000 0000000000100010 00000001f5000000 0000000000000000
head: 0000000000000001 ffffea00004b0481 ffffffffffffffff 0000000000000000
head: 0000000000000002 0000000000000000 00000000ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888012c11f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff888012c12000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
> ffff888012c12080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888012c12100: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc
ffff888012c12180: fc fc fc fc fc fc fc fc fc
---truncated---
-
CVE-2025-23163
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net: vlan: don't propagate flags on open
With the device instance lock, there is now a possibility of a deadlock:
[ 1.211455] ============================================
[ 1.211571] WARNING: possible recursive locking detected
[ 1.211687] 6.14.0-rc5-01215-g032756b4ca7a-dirty #5 Not tainted
[ 1.211823] --------------------------------------------
[ 1.211936] ip/184 is trying to acquire lock:
[ 1.212032] ffff8881024a4c30 (&dev-lock){+.+.}-{4:4}, at: dev_set_allmulti+0x4e/0xb0
[ 1.212207]
[ 1.212207] but task is already holding lock:
[ 1.212332] ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.212487]
[ 1.212487] other info that might help us debug this:
[ 1.212626] Possible unsafe locking scenario:
[ 1.212626]
[ 1.212751] CPU0
[ 1.212815] ----
[ 1.212871] lock(&dev->lock);
[ 1.212944] lock(&dev->lock);
[ 1.213016]
[ 1.213016] *** DEADLOCK ***
[ 1.213016]
[ 1.213143] May be due to missing lock nesting notation
[ 1.213143]
[ 1.213294] 3 locks held by ip/184:
[ 1.213371] #0: ffffffff838b53e0 (rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x1b/0xa0
[ 1.213543] #1: ffffffff84e5fc70 (&net->rtnl_mutex){+.+.}-{4:4}, at: rtnl_nets_lock+0x37/0xa0
[ 1.213727] #2: ffff8881024a4c30 (&dev->lock){+.+.}-{4:4}, at: dev_open+0x50/0xb0
[ 1.213895]
[ 1.213895] stack backtrace:
[ 1.213991] CPU: 0 UID: 0 PID: 184 Comm: ip Not tainted 6.14.0-rc5-01215-g032756b4ca7a-dirty #5
[ 1.213993] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
[ 1.213994] Call Trace:
[ 1.213995] TASK>
[ 1.213996] dump_stack_lvl+0x8e/0xd0
[ 1.214000] print_deadlock_bug+0x28b/0x2a0
[ 1.214020] lock_acquire+0xea/0x2a0
[ 1.214027] __mutex_lock+0xbf/0xd40
[ 1.214038] dev_set_allmulti+0x4e/0xb0 # real_dev->flags & IFF_ALLMULTI
[ 1.214040] vlan_dev_open+0xa5/0x170 # ndo_open on vlandev
[ 1.214042] __dev_open+0x145/0x270
[ 1.214046] __dev_change_flags+0xb0/0x1e0
[ 1.214051] netif_change_flags+0x22/0x60 # IFF_UP vlandev
[ 1.214053] dev_change_flags+0x61/0xb0 # for each device in group from dev->vlan_info
[ 1.214055] vlan_device_event+0x766/0x7c0 # on netdevsim0
[ 1.214058] notifier_call_chain+0x78/0x120
[ 1.214062] netif_open+0x6d/0x90
[ 1.214064] dev_open+0x5b/0xb0 # locks netdevsim0
[ 1.214066] bond_enslave+0x64c/0x1230
[ 1.214075] do_set_master+0x175/0x1e0 # on netdevsim0
[ 1.214077] do_setlink+0x516/0x13b0
[ 1.214094] rtnl_newlink+0xaba/0xb80
[ 1.214132] rtnetlink_rcv_msg+0x440/0x490
[ 1.214144] netlink_rcv_skb+0xeb/0x120
[ 1.214150] netlink_unicast+0x1f9/0x320
[ 1.214153] netlink_sendmsg+0x346/0x3f0
[ 1.214157] __sock_sendmsg+0x86/0xb0
[ 1.214160] ____sys_sendmsg+0x1c8/0x220
[ 1.214164] ___sys_sendmsg+0x28f/0x2d0
[ 1.214179] __x64_sys_sendmsg+0xef/0x140
[ 1.214184] do_syscall_64+0xec/0x1d0
[ 1.214190] entry_SYSCALL_64_after_hwframe+0x77/0x7f
[ 1.214191] RIP: 0033:0x7f2d1b4a7e56
Device setup:
netdevsim0 (down)
^ ^
bond netdevsim1.100@netdevsim1 allmulticast=on (down)
When we enslave the lower device (netdevsim0) which has a vlan, we
propagate vlan's allmuti/promisc flags during ndo_open. This causes
(re)locking on of the real_dev.
Propagate allmulti/promisc on flags change, not on the open. There
is a slight semantics change that vlans that are down now propagate
the flags, but this seems unlikely to result in the real issues.
Reproducer:
echo 0 1 > /sys/bus/netdevsim/new_device
dev_path=$(ls -d /sys/bus/netdevsim/devices/netdevsim0/net/*)
dev=$(echo $dev_path | rev | cut -d/ -f1 | rev)
ip link set dev $dev name netdevsim0
ip link set dev netdevsim0 up
ip link add link netdevsim0 name netdevsim0.100 type vlan id 100
ip link set dev netdevsim0.100 allm
---truncated---
-
CVE-2025-23162
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/vf: Don't try to trigger a full GT reset if VF
VFs don't have access to the GDRST(0x941c) register that driver
uses to reset a GT. Attempt to trigger a reset using debugfs:
$ cat /sys/kernel/debug/dri/0000:00:02.1/gt0/force_reset
or due to a hang condition detected by the driver leads to:
[ ] xe 0000:00:02.1: [drm] GT0: trying reset from force_reset [xe]
[ ] xe 0000:00:02.1: [drm] GT0: reset queued
[ ] xe 0000:00:02.1: [drm] GT0: reset started
[ ] ------------[ cut here ]------------
[ ] xe 0000:00:02.1: [drm] GT0: VF is trying to write 0x1 to an inaccessible register 0x941c+0x0
[ ] WARNING: CPU: 3 PID: 3069 at drivers/gpu/drm/xe/xe_gt_sriov_vf.c:996 xe_gt_sriov_vf_write32+0xc6/0x580 [xe]
[ ] RIP: 0010:xe_gt_sriov_vf_write32+0xc6/0x580 [xe]
[ ] Call Trace:
[ ] TASK
[ ] ? show_regs+0x6c/0x80
[ ] ? __warn+0x93/0x1c0
[ ] ? xe_gt_sriov_vf_write32+0xc6/0x580 [xe]
[ ] ? report_bug+0x182/0x1b0
[ ] ? handle_bug+0x6e/0xb0
[ ] ? exc_invalid_op+0x18/0x80
[ ] ? asm_exc_invalid_op+0x1b/0x20
[ ] ? xe_gt_sriov_vf_write32+0xc6/0x580 [xe]
[ ] ? xe_gt_sriov_vf_write32+0xc6/0x580 [xe]
[ ] ? xe_gt_tlb_invalidation_reset+0xef/0x110 [xe]
[ ] ? __mutex_unlock_slowpath+0x41/0x2e0
[ ] xe_mmio_write32+0x64/0x150 [xe]
[ ] do_gt_reset+0x2f/0xa0 [xe]
[ ] gt_reset_worker+0x14e/0x1e0 [xe]
[ ] process_one_work+0x21c/0x740
[ ] worker_thread+0x1db/0x3c0
Fix that by sending H2G VF_RESET(0x5507) action instead.
-
CVE-2025-23161
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
PCI: vmd: Make vmd_dev::cfg_lock a raw_spinlock_t type
The access to the PCI config space via pci_ops::read and pci_ops::write is
a low-level hardware access. The functions can be accessed with disabled
interrupts even on PREEMPT_RT. The pci_lock is a raw_spinlock_t for this
purpose.
A spinlock_t becomes a sleeping lock on PREEMPT_RT, so it cannot be
acquired with disabled interrupts. The vmd_dev::cfg_lock is accessed in
the same context as the pci_lock.
Make vmd_dev::cfg_lock a raw_spinlock_t type so it can be used with
interrupts disabled.
This was reported as:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
Call Trace:
rt_spin_lock+0x4e/0x130
vmd_pci_read+0x8d/0x100 [vmd]
pci_user_read_config_byte+0x6f/0xe0
pci_read_config+0xfe/0x290
sysfs_kf_bin_read+0x68/0x90
[bigeasy: reword commit message]
Tested-off-by: Luis Claudio R. Goncalves lgoncalv@redhat.com
[kwilczynski: commit log]
[bhelgaas: add back report info from
https://lore.kernel.org/lkml/20241218115951.83062-1-ryotkkr98@gmail.com/]
-
CVE-2025-23160
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
media: mediatek: vcodec: Fix a resource leak related to the scp device in FW initialization
On Mediatek devices with a system companion processor (SCP) the mtk_scp
structure has to be removed explicitly to avoid a resource leak.
Free the structure in case the allocation of the firmware structure fails
during the firmware initialization.
-
CVE-2025-23159
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi: add a check to handle OOB in sfr region
sfr-buf_size is in shared memory and can be modified by malicious user.
OOB write is possible when the size is made higher than actual sfr data
buffer. Cap the size to allocated size for such cases.
-
CVE-2025-23158
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi: add check to handle incorrect queue size
qsize represents size of shared queued between driver and video
firmware. Firmware can modify this value to an invalid large value. In
such situation, empty_space will be bigger than the space actually
available. Since new_wr_idx is not checked, so the following code will
result in an OOB write.
...
qsize = qhdr-q_size
if (wr_idx >= rd_idx)
empty_space = qsize - (wr_idx - rd_idx)
....
if (new_wr_idx qsize) {
memcpy(wr_ptr, packet, dwords << 2) --> OOB write
Add check to ensure qsize is within the allocated size while
reading and writing packets into the queue.
-
CVE-2025-23157
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi_parser: add check to avoid out of bound access
There is a possibility that init_codecs is invoked multiple times during
manipulated payload from video firmware. In such case, if codecs_count
can get incremented to value more than MAX_CODEC_NUM, there can be OOB
access. Reset the count so that it always starts from beginning.
-
CVE-2025-23156
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
media: venus: hfi_parser: refactor hfi packet parsing logic
words_count denotes the number of words in total payload, while data
points to payload of various property within it. When words_count
reaches last word, data can access memory beyond the total payload. This
can lead to OOB access. With this patch, the utility api for handling
individual properties now returns the size of data consumed. Accordingly
remaining bytes are calculated before parsing the payload, thereby
eliminates the OOB access possibilities.
-
CVE-2025-23155
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: Fix accessing freed irq affinity_hint
The cpumask should not be a local variable, since its pointer is saved
to irq_desc and may be accessed from procfs.
To fix it, use the persistent mask cpumask_of(cpu#).
-
CVE-2025-23154
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
io_uring/net: fix io_req_post_cqe abuse by send bundle
[ 114.987980][ T5313] WARNING: CPU: 6 PID: 5313 at io_uring/io_uring.c:872 io_req_post_cqe+0x12e/0x4f0
[ 114.991597][ T5313] RIP: 0010:io_req_post_cqe+0x12e/0x4f0
[ 115.001880][ T5313] Call Trace:
[ 115.002222][ T5313] TASK
[ 115.007813][ T5313] io_send+0x4fe/0x10f0
[ 115.009317][ T5313] io_issue_sqe+0x1a6/0x1740
[ 115.012094][ T5313] io_wq_submit_work+0x38b/0xed0
[ 115.013223][ T5313] io_worker_handle_work+0x62a/0x1600
[ 115.013876][ T5313] io_wq_worker+0x34f/0xdf0
As the comment states, io_req_post_cqe() should only be used by
multishot requests, i.e. REQ_F_APOLL_MULTISHOT, which bundled sends are
not. Add a flag signifying whether a request wants to post multiple
CQEs. Eventually REQ_F_APOLL_MULTISHOT should imply the new flag, but
that's left out for simplicity.
-
CVE-2025-23153
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
arm/crc-t10dif: fix use of out-of-scope array in crc_t10dif_arch()
Fix a silly bug where an array was used outside of its scope.
-
CVE-2025-23152
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
arm64/crc-t10dif: fix use of out-of-scope array in crc_t10dif_arch()
Fix a silly bug where an array was used outside of its scope.
-
CVE-2025-23151
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: host: Fix race between unprepare and queue_buf
A client driver may use mhi_unprepare_from_transfer() to quiesce
incoming data during the client driver's tear down. The client driver
might also be processing data at the same time, resulting in a call to
mhi_queue_buf() which will invoke mhi_gen_tre(). If mhi_gen_tre() runs
after mhi_unprepare_from_transfer() has torn down the channel, a panic
will occur due to an invalid dereference leading to a page fault.
This occurs because mhi_gen_tre() does not verify the channel state
after locking it. Fix this by having mhi_gen_tre() confirm the channel
state is valid, or return error to avoid accessing deinitialized data.
[mani: added stable tag]
-
CVE-2025-23150
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix off-by-one error in do_split
Syzkaller detected a use-after-free issue in ext4_insert_dentry that was
caused by out-of-bounds access due to incorrect splitting in do_split.
BUG: KASAN: use-after-free in ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
Write of size 251 at addr ffff888074572f14 by task syz-executor335/5847
CPU: 0 UID: 0 PID: 5847 Comm: syz-executor335 Not tainted 6.12.0-rc6-syzkaller-00318-ga9cda7c0ffed #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024
Call Trace:
TASK
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
kasan_check_range+0x282/0x290 mm/kasan/generic.c:189
__asan_memcpy+0x40/0x70 mm/kasan/shadow.c:106
ext4_insert_dentry+0x36a/0x6d0 fs/ext4/namei.c:2109
add_dirent_to_buf+0x3d9/0x750 fs/ext4/namei.c:2154
make_indexed_dir+0xf98/0x1600 fs/ext4/namei.c:2351
ext4_add_entry+0x222a/0x25d0 fs/ext4/namei.c:2455
ext4_add_nondir+0x8d/0x290 fs/ext4/namei.c:2796
ext4_symlink+0x920/0xb50 fs/ext4/namei.c:3431
vfs_symlink+0x137/0x2e0 fs/namei.c:4615
do_symlinkat+0x222/0x3a0 fs/namei.c:4641
__do_sys_symlink fs/namei.c:4662 [inline]
__se_sys_symlink fs/namei.c:4660 [inline]
__x64_sys_symlink+0x7a/0x90 fs/namei.c:4660
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The following loop is located right above 'if' statement.
for (i = count-1; i >= 0; i--) {
/* is more than half of this entry in 2nd half of the block? */
if (size + map[i].size/2 > blocksize/2)
break;
size += map[i].size;
move++;
}
'i' in this case could go down to -1, in which case sum of active entries
wouldn't exceed half the block size, but previous behaviour would also do
split in half if sum would exceed at the very last block, which in case of
having too many long name files in a single block could lead to
out-of-bounds access and following use-after-free.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
-
CVE-2025-23149
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
tpm: do not start chip while suspended
Checking TPM_CHIP_FLAG_SUSPENDED after the call to tpm_find_get_ops() can
lead to a spurious tpm_chip_start() call:
[35985.503771] i2c i2c-1: Transfer while suspended
[35985.503796] WARNING: CPU: 0 PID: 74 at drivers/i2c/i2c-core.h:56 __i2c_transfer+0xbe/0x810
[35985.503802] Modules linked in:
[35985.503808] CPU: 0 UID: 0 PID: 74 Comm: hwrng Tainted: G W 6.13.0-next-20250203-00005-gfa0cb5642941 #19 9c3d7f78192f2d38e32010ac9c90fdc71109ef6f
[35985.503814] Tainted: [W]=WARN
[35985.503817] Hardware name: Google Morphius/Morphius, BIOS Google_Morphius.13434.858.0 10/26/2023
[35985.503819] RIP: 0010:__i2c_transfer+0xbe/0x810
[35985.503825] Code: 30 01 00 00 4c 89 f7 e8 40 fe d8 ff 48 8b 93 80 01 00 00 48 85 d2 75 03 49 8b 16 48 c7 c7 0a fb 7c a7 48 89 c6 e8 32 ad b0 fe 0f 0b b8 94 ff ff ff e9 33 04 00 00 be 02 00 00 00 83 fd 02 0f 5
[35985.503828] RSP: 0018:ffffa106c0333d30 EFLAGS: 00010246
[35985.503833] RAX: 074ba64aa20f7000 RBX: ffff8aa4c1167120 RCX: 0000000000000000
[35985.503836] RDX: 0000000000000000 RSI: ffffffffa77ab0e4 RDI: 0000000000000001
[35985.503838] RBP: 0000000000000001 R08: 0000000000000001 R09: 0000000000000000
[35985.503841] R10: 0000000000000004 R11: 00000001000313d5 R12: ffff8aa4c10f1820
[35985.503843] R13: ffff8aa4c0e243c0 R14: ffff8aa4c1167250 R15: ffff8aa4c1167120
[35985.503846] FS: 0000000000000000(0000) GS:ffff8aa4eae00000(0000) knlGS:0000000000000000
[35985.503849] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[35985.503852] CR2: 00007fab0aaf1000 CR3: 0000000105328000 CR4: 00000000003506f0
[35985.503855] Call Trace:
[35985.503859]
[35985.503863] ? __warn+0xd4/0x260
[35985.503868] ? __i2c_transfer+0xbe/0x810
[35985.503874] ? report_bug+0xf3/0x210
[35985.503882] ? handle_bug+0x63/0xb0
[35985.503887] ? exc_invalid_op+0x16/0x50
[35985.503892] ? asm_exc_invalid_op+0x16/0x20
[35985.503904] ? __i2c_transfer+0xbe/0x810
[35985.503913] tpm_cr50_i2c_transfer_message+0x24/0xf0
[35985.503920] tpm_cr50_i2c_read+0x8e/0x120
[35985.503928] tpm_cr50_request_locality+0x75/0x170
[35985.503935] tpm_chip_start+0x116/0x160
[35985.503942] tpm_try_get_ops+0x57/0x90
[35985.503948] tpm_find_get_ops+0x26/0xd0
[35985.503955] tpm_get_random+0x2d/0x80
Don't move forward with tpm_chip_start() inside tpm_try_get_ops(), unless
TPM_CHIP_FLAG_SUSPENDED is not set. tpm_find_get_ops() will return NULL in
such a failure case.
-
CVE-2025-23148
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
soc: samsung: exynos-chipid: Add NULL pointer check in exynos_chipid_probe()
soc_dev_attr-revision could be NULL, thus,
a pointer check is added to prevent potential NULL pointer dereference.
This is similar to the fix in commit 3027e7b15b02
("ice: Fix some null pointer dereference issues in ice_ptp.c").
This issue is found by our static analysis tool.
-
CVE-2025-23147
•
published on May 1, 2025
In the Linux kernel, the following vulnerability has been resolved:
i3c: Add NULL pointer check in i3c_master_queue_ibi()
The I3C master driver may receive an IBI from a target device that has not
been probed yet. In such cases, the master calls `i3c_master_queue_ibi()`
to queue an IBI work task, leading to "Unable to handle kernel read from
unreadable memory" and resulting in a kernel panic.
Typical IBI handling flow:
1. The I3C master scans target devices and probes their respective drivers.
2. The target device driver calls `i3c_device_request_ibi()` to enable IBI
and assigns `dev-ibi = ibi`.
3. The I3C master receives an IBI from the target device and calls
`i3c_master_queue_ibi()` to queue the target device driver’s IBI
handler task.
However, since target device events are asynchronous to the I3C probe
sequence, step 3 may occur before step 2, causing `dev->ibi` to be `NULL`,
leading to a kernel panic.
Add a NULL pointer check in `i3c_master_queue_ibi()` to prevent accessing
an uninitialized `dev->ibi`, ensuring stability.